Здравствуйте. Есть такая задача:
В тетраэдре `DABC`: `T in AD`, `AT:TD=1:5`; `P in DC`, `DP:PC=2:1`; `K in AB`, `AK:KB=3:1`.
а) Построить сечение тетраэдра плоскостью `TPK`.
б) В каком отношении плоскость сечения делит объем тетраэдра?
Мое решение:
а) Построил `TPK`сечение плоскостью
б) Первое, что нужно найти, это отношение объемов пирамид `DABC` и `SPCM` соответственно.
`V_(DABC):V_(PSMC)=(1/3*1/2*AC*BC*sinACB)/(1/3*1/2*AC*CM*sinACB)=(BC)/(CM)`
Найденное отношение `(CB)/(CM)` можно найти по теореме Менелая из треугольника `CBA`
`(CM)/(BM)*(BK)/(AK)*(SA)/(SC)=1`;
`(CM)/(BM)*(BK)/(AK)*(SA)/(SC)=1`;
`(CM)/(BM)*1/3*(SA)/(SC)=1`;
`(BM)/(CM)=1/3*(SA)/(SC)` => [так как нужно отношение `(BC)/(CM)`, то `BM=BC-MC`] => `(BC-MC)/(MC)=1/3*(SA)/(SC)` => `(BC)/(MC)=1/3*(SA)/(SC)+1`;
Теперь нужно найти отношение `SA:SC` `MSC` по теореме Менелая:
`(AC)/(SA)*(SK)/(KM)*(BM)/(BC)=1`;
`(SC-SA)/(SA)*(SK)/(KM)*(BM)/(BC)=1`;
`(SC)/(SA)=(KM)/(SK)*(BC)/(BM)+1`.
Но теперь нужно найти отношение `(KM)/(SK)`. И здесь я не знаю, что делать дальше. Наверное, есть какие-то подобные треугольники, но я их не вижу.
Прошу помощи.
В тетраэдре `DABC`: `T in AD`, `AT:TD=1:5`; `P in DC`, `DP:PC=2:1`; `K in AB`, `AK:KB=3:1`.
а) Построить сечение тетраэдра плоскостью `TPK`.
б) В каком отношении плоскость сечения делит объем тетраэдра?
Мое решение:
а) Построил `TPK`сечение плоскостью
б) Первое, что нужно найти, это отношение объемов пирамид `DABC` и `SPCM` соответственно.
`V_(DABC):V_(PSMC)=(1/3*1/2*AC*BC*sinACB)/(1/3*1/2*AC*CM*sinACB)=(BC)/(CM)`
Найденное отношение `(CB)/(CM)` можно найти по теореме Менелая из треугольника `CBA`
`(CM)/(BM)*(BK)/(AK)*(SA)/(SC)=1`;
`(CM)/(BM)*(BK)/(AK)*(SA)/(SC)=1`;
`(CM)/(BM)*1/3*(SA)/(SC)=1`;
`(BM)/(CM)=1/3*(SA)/(SC)` => [так как нужно отношение `(BC)/(CM)`, то `BM=BC-MC`] => `(BC-MC)/(MC)=1/3*(SA)/(SC)` => `(BC)/(MC)=1/3*(SA)/(SC)+1`;
Теперь нужно найти отношение `SA:SC` `MSC` по теореме Менелая:
`(AC)/(SA)*(SK)/(KM)*(BM)/(BC)=1`;
`(SC-SA)/(SA)*(SK)/(KM)*(BM)/(BC)=1`;
`(SC)/(SA)=(KM)/(SK)*(BC)/(BM)+1`.
Но теперь нужно найти отношение `(KM)/(SK)`. И здесь я не знаю, что делать дальше. Наверное, есть какие-то подобные треугольники, но я их не вижу.
Прошу помощи.

-
-
29.12.2018 в 23:10теорема Менелая Вам в помощь...
а вообще, задача весьма аналогична Вашей предыдущей...
-
-
30.12.2018 в 00:15Не вижу, в каком треугольнике можно еще применить эту теорему. Только если в треугольнике `SMP`, где `TK`пересекается с продолжением стороны `MP`. Но это, мне кажется, не очень упростит решение.
-
-
30.12.2018 в 17:07ну, там вообще-то два треугольника...
-
-
30.12.2018 в 21:50-
-
31.12.2018 в 00:09-
-
31.12.2018 в 15:29