"Найти все простые `p`, такие, что `3p + 20` и `3p + 22` тоже простые"
Ну любое простое число представимо в виде
`p = 6k +- 1`, `k \in Z`
Подставим в наши выражения
`3(6k + 1) + 20 = 18k + 23 = 6 * 3k + 6 * 4 - 1 = 6(3k + 4) - 1 sim 6q - 1`
`3(6k - 1) + 20 = 18k + 17 = 6 * 3k + 6 * 3 - 1 = 6(3k + 3) - 1 sim 6q - 1`
`3(6k + 1) + 22 = 18k + 25 = 6 * 3k + 6 * 4 + 1 sim 6q + 1`
`3(6k - 1) + 22 = 18k + 19 = 6 * 3k + 6 * 3 + 1 sim 6q + 1`
Проблема только в том, что простое число лишь представимо в таком виде. Однако `6k + 1` не всегда является простым. Если `k = 4` то это составное число.
То есть я тут как бы доказал, что если мы подставим в `3p + 20` любое простое число, то мы будем получать числа вида `6k - 1`, не обязательно простые.